Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are ......
This book provides a comprehensive and user-friendly exploration of the tremendous recent developments that reveal the connections between real algebraic geometry and optimization, two subjects that were usually taught separately until the beginning of the 21st century. Real algebraic geometry studies the solutions of polynomial equations and ......
This book provides a comprehensive and user-friendly exploration of the tremendous recent developments that reveal the connections between real algebraic geometry and optimization, two subjects that were usually taught separately until the beginning of the 21st century. Real algebraic geometry studies the solutions of polynomial equations and ......
The Langlands program has been a very active and central field in mathematics ever since its conception over 50 years ago. It connects number theory, representation theory and arithmetic geometry, and other fields in a profound way. There are nevertheless very few expository accounts beyond the GL(2) case. This book features expository accounts of ......
We show that if a hyperbolic knot manifold M contains an essential twicepunctured torus F with boundary slope ? and admits a filling with slope ? producing a Seifert fibred space, then the distance between the slopes ? and ? is less than or equal to 5 unless M is the exterior of the figure eight knot. The result is sharp; the bound of 5 can be ......
In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind ......
Given a compact Lie group G and a commutative orthogonal ring spectrum R such that R[G]* = ?*(R ? G+) is finitely generated and projective over ?*(R), we construct a multiplicative G-Tate spectral sequence for each R-module X in orthogonal G-spectra, with E2-page given by the Hopf algebra Tate cohomology of R[G]* with coefficients in ?*(X). Under ......
This textbook offers a rigorous mathematical introduction to cellular automata (CA). Numerous colorful graphics illustrate the many intriguing phenomena, inviting undergraduates to step into the rich field of symbolic dynamics. Beginning with a brief history, the first half of the book establishes the mathematical foundations of cellular automata. ......
In previous work with M.C. Fernandes, we found a Lie algebroid symmetry for the Einstein evolution equations. The present work was motivated by the effort to combine this symmetry with the hamiltonian structure of the equations to explain the coisotropic structure of the constraint subset for the initial value problem. In this paper, we extend the ......