This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27-October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada. Cyclic cohomology, since its discovery forty years ago in noncommutative differential ......
This book is a collection of essays written by a distinguished mathematician with a very long and successful career as a researcher and educator working in many areas of pure and applied mathematics. The author writes about everything he found exciting about math, its history, and its connections with art, and about how to explain it when so many ......
This book provides an introduction to classical methods in commutative algebra and their applications to number theory, algebraic geometry, and computational algebra. The use of number theory as a motivating theme throughout the book provides a rich and interesting context for the material covered. In addition, many results are reinterpreted from ......
The goal of this book is to introduce the reader to methodologies in recovery problems for objects, such as functions and signals, from partial or indirect information. The recovery of objects from a set of data demands key solvers of inverse and sampling problems. Until recently, connections between the mathematical areas of inverse problems and ......
Ce livre constitue un expose detaille de la serie de cours donnes en 2020 par le Prof. Nicolas Bergeron, titulaire de la Chaire Aisenstadt au CRM de Montreal. L'objet de ce texte est une ample generalisation d'une famille d'identites classiques, notamment la formule d'addition de la fonction cotangente ou celle des series d'Eisenstein. Le livre ......
Ricci flow is an exciting subject of mathematics with diverse applications in geometry, topology, and other fields. It employs a heat-type equation to smooth an initial Riemannian metric on a manifold. The formation of singularities in the manifold's topology and geometry is a desirable outcome. Upon closer examination, these singularities often ......
This book provides an introduction to classical methods in commutative algebra and their applications to number theory, algebraic geometry, and computational algebra. The use of number theory as a motivating theme throughout the book provides a rich and interesting context for the material covered. In addition, many results are reinterpreted from ......
Ricci flow is an exciting subject of mathematics with diverse applications in geometry, topology, and other fields. It employs a heat-type equation to smooth an initial Riemannian metric on a manifold. The formation of singularities in the manifold's topology and geometry is a desirable outcome. Upon closer examination, these singularities often ......