A Dynamical Systems Approach to Theory and Practice
This graduate-level introduction to ordinary differential equations combines both qualitative and numerical analysis of solutions, in line with Poincare's vision for the field over a century ago. Taking into account the remarkable development of dynamical systems since then, the authors present the core topics that every young mathematician of our ......
This volume contains the proceedings of the AMS Special Session on Differential Geometry and Global Analysis, Honoring the Memory of Tadashi Nagano (1930-2017), held January 16, 2020, in Denver, Colorado. Tadashi Nagano was one of the great Japanese differential geometers, whose fundamental and seminal work still attracts much interest today. ......
This book features plane curves-the simplest objects in differential geometry-to illustrate many deep and inspiring results in the field in an elementary and accessible way. After an introduction to the basic properties of plane curves, the authors introduce a number of complex and beautiful topics, including the rotation number (with a proof of ......
Discovering Abstract Algebra takes an Inquiry-Based Learning approach to the subject, leading students to discover for themselves its main themes and techniques. Concepts are introduced conversationally through extensive examples and student investigation before being formally defined. Students will develop skills in carefully making statements ......
Discrete Morse theory is a powerful tool combining ideas in both topology and combinatorics. Invented by Robin Forman in the mid 1990s, discrete Morse theory is a combinatorial analogue of Marston Morse's classical Morse theory. Its applications are vast, including applications to topological data analysis, combinatorics, and computer science. ......
Discrete Painleve equations are nonlinear difference equations, which arise from translations on crystallographic lattices. The deceptive simplicity of this statement hides immensely rich mathematical properties, connecting dynamical systems, algebraic geometry, Coxeter groups, topology, special functions theory, and mathematical physics. This ......
A fundamental question in the theory of discrete and continuous-time population models concerns the conditions for the extinction or persistence of populations - a question that is addressed mathematically by persistence theory. For some time, it has been recognized that if the dynamics of a structured population are mathematically captured by ......